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Abstract 

It is argued that space-time has a cellular structure, the exact structure being observer- 
dependent and consistent with the amount of energy he has available for refining his 
measuring apparatus. The usual concept of a single distance in continuous space is 
replaced by the concept of a distance set between cells, the elements of each set depending 
on the cellular structures of both the space and the measuring rod that is used in the 
measurement. The idea that there are many different ways of measuring the same 
observable is abandoned: instead, the definition of the original observable becomes split 
by the different measuring processes used, and the results of a measurement of each new 
observable defined by this splitting are predicted from the eigenvalues of a common 
operator by using an observer-dependent construction. Transformations between 
observers with different cellular structures are considered. The transformation is not as 
exact as in the continuous case, with at best a cell of one space being associated with a set 
of cells in the other. This transformation is determined by information being exchanged 
by the observers concerning the locations in their two spaces of a finite number of com- 
mon events. The transformation becomes more exact as more information is exchanged. 

1. Introduction 

In  a recent  paper  (Bohm et al. 1970) the view was expressed tha t  i t  is no t  
sufficient to  merely  change the fo rmula t ion  o f  physical  theory ,  i t  is also 
necessary to  change the in formal  language which describes the physical  
phenomena .  In  their  words,  ' I n  any new a p p r o a c h  tha t  is re levant  to  physics,  
discreteness should  appea r  as a na tura l  consequence o f  the in formal  
cons idera t ions  and  should  not  be a rb i t ra r i ly  imposed.  Thus  it is not  poss ible  
to  ob ta in  discreteness na tura l ly  i f  the classical not ions  o f p a r t M e ,  t ra jec tory ,  
potent ia l ,  field, etc., cont inue to be taken  as pr imi t ive  concepts  since these 
not ions  were deve loped  specifically for  the con t inuum. '  This would  seem to 
be a correct  view of  the si tuat ion.  F o r  example,  suppose  we wish to Use the 
idea  o f  a cel lular  space in our  theory  by  in t roduc ing  fundamenta l  lengths 
in to  our  existing equat ions.  Such a p rocedure  would  be inconsis tent  i f  the  
equat ions  con ta ined  the concepts  o f  distance,  velocity,  etc., because these 
concepts  are no t  defined in a cel lular  space. W e  mus t  ei ther a b a n d o n  these 
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equations, or else make new interpretations of these concepts by regarding 
them as non-observable. New observable quantities would then have to be 
found--quantities which depend on the complete System-apparatus 
complex, because there can be no separation between these two. 

However, the author disagrees with Hiley & Stuart (1971) who express 
the view that a cellular structure of space-time is not supported by direct 
experimental evidence. For whenever we set up our measuring instruments 
we must always be content with a certain degree of non-refinement, and 
whenever we convey information about the positions of events, etc., we 
always do so in a discrete way. This non-refinement of our apparatus has 
the effect of imposing a cellular structure on space-time, and measurements 
refer to each cell as a whole (or set of cells) and not to individual points 
within the cells. Of  course, the cellular structure can be refined by refining 
the apparatus, but this requires additional cost and (equivalently) additional 
energy. It is only by supplying an infinite amount of energy to the apparatus 
that the space-time takes on a continuous structure. (The fact that an 
infinite amount of energy is needed for this process can be illustrated by 
many thought-experiments.) With this in mind we may postulate the basic 
principle of cellular space-time structure: 

An observer works within a cellular space-time structure the fineness of  which 
is limited by the amount of  energy he has available for refining his apparatus. 
The observer requires infinite energy in order to be able to set up a continuous 
space-time structure. 

This means that space-time always has a cellular structure, but the exact 
structure is observer-dependent. In practice this means that an observer 
must decide how much energy he has available for refining his apparatus, 
and he must then be content with the fineness of the associated cellular 
structure. 

Since the structure is observer dependent we must allow the observer to 
take any structure he pleases, consistent with the amount of energy he has 
at his disposal for refining his apparatus. This means that the structure may 
be non-uniform. But the one which is easiest to handle is the rectangular 
structure and this is usually introduced into existing equations by using 
'fundamental' parameters ~ (/~ = 1, 2, 3, 4). Continuous coordinates are 
then replaced by nu ~:~ where n~ is the cell number in the/z ' th direction: 

x .  -+ n~, ~:. (1.1) 

and differential operators must be replaced by central-difference operators 
(Cole, 1970): 

-+ E u - E ; '  (1.2) 
Ox u 2~ u 

where E u is the operator defined for all func t ionsfby  

Et~f(nl . . . .  , n4) = f ( n l  . . . .  , n~, + 1, . . . ,  n4). 
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Care must be taken in the interpretation of the ~u--it would be inconsistent 
to regard it as the length of the cell edge in the /d th  direction, because the 
usual idea of length is not valid in a cellular space. (An alternative concept 
of length based on a possible measuring process is introduced in Section 2.) 
Rather, the ~ will be interpreted as parameters which enable the formal 
substitutions (1. I) and (1.2) to be made. Furthermore the ~:~ are observer- 
dependent, and they tend to zero in the continuous limit which is an ideal 
state brought about by the observer providing infinite energy to refine his 
apparatus. 

Using the transition (1.2) one finds that, using periodic boundary 
conditions, the eigenvalues of the difference operator corresponding to the 
momentum operator in the/z'th direction are (Cole, 1970) 

pq = h ~  I sin (2rrq/Nu) (1.3) 

for integers q and fixed integer N~ so that the magnitudes of the eigenvalues 
are less than or equal to h(~ 1. It is well known (Ingraham, 1967) that a high 
momentum cut-off enables one to get rid of the divergences which are 
encountered in the renormalisation theory which is constructed within a 
continuous space-time structure. By invoking the above postulate it would 
not be inconsistent to say that this divergence is merely a reappearance of 
the infinite energy that had to be put in at the beginning to make the theory 
continuous. As mentioned before, however, the concept of momentum is 
not defined in a cellular space, so that the eigenvalues (1.3) can no longer be 
regarded as observable quantities. But it may still be possible to use these 
eigenvalues to calculate actual observed values, the way in which we use 
these eigenvalues depending on the way the observation is made. The general 
eigenvalue problem is tackled in Section 3. 

Thus our starting point is a cellular space-time whose structure is 
observer-dependent. An observer is able to say in which cell (or set of cells) 
an event is located, but he is unable to further localise the event at a specific 
point within the cell. Two main problems arising are (i) to define new 
observable quantities to replace the concepts of the length, momentum etc., 
and (ii) to find how two or more observers with different cellular structures 
can communicate the results of observations to one another. This second 
problem is tackled in Section 4. 

2. The Distance Sets 

From the considerations of the last section we see that we must consider 
the relationships between cells rather than between individual points within 
the cells. The concept of distance is based upon the extension between 
individual points, and so this concept must be modified in a cellular theory 
in such a way that it is based on a real measuring process. The conventional 
definition of the distance between two subsets A and B of a pseudo-metric 
space is 

dist(A, B) = inf{dist(x, y): x ~ A and y e B} 
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This definition as well as the Hausdorff metric, although convenient for 
many purposes, is arbitrary and not based on the distance-measuring 
processes which observers actually use. 

We must first decide what this distance-measuring operation is and then 
see what quantities we get from such an operation. Suppose that the 
'distance' is to be measured between the three-dimensional cells specified by 
the integers n~ and n2. We use a measuring rod r which itself has a cellular 
structure consisting of  a long string of non-overlapping three-dimensional 
cells. We then concentrate on two points, el in nl and ez in n2, and lay the rod 
so that el and e2 lie in some cells of  the rod. By noting these cells, the distance 
between e~ and e2 is read off the scale according to some convention. In 
general it will be possible to move the rod such that although el stays in the 
same cell of the rod, the point e2 will appear in a different cell, so that a new 
distance is read off the scale. If  the rod has a non-uniform cellular structure 
it will be possible to translate the rod so that many more readings of the 
scale will correspond to e~ and ez. By taking all possible pairs of such points 
in n~ and n2 we then generate a set of distances, each element in the set 
corresponding to a reading of the rod when it is laid against the cells nl and 
n2. We will denote the distance set by d,(nl,n2); the elements of d will depend 
on the cellular structures of both the space and the rod and the number of 
elements of d,(nl, n2) will depend not only on r but also on nl and n2. Note 
that although we have done something that the observer is not allowed to 
do, namely split up the cells into individual points, by eventually removing 
the framework of individual points we arrive at a measuring process which 
is not incompatible with the cellular structure. That is, we tabulate the 
incidences between n~ and n2 and the cells of the measuring rod. 

Clearly such a process can also be extended to measuring the distance 
sets between different regions L and M formed from sets of cells. Strictly 
speaking the sets d,(L, M) should be defined between regions of space, which 
are themselves cells in a coarser structure, and not between sets of  cells, but 
to simplify the notation we will make no distinction between these so that 
L, etc. will denote both a set of cells and the region formed from that set. 

Having obtained a set of incidence between the cells n~ and n2 and the 
cells of  the rod, the observer is at liberty to construct his distance set in any 
manner he pleases. But in what follows we will consider only those con- 
structions which give the following properties to the d-sets: for all sets of 
cells L, M and N, 

(a) all elements of d~(L,M) are real, non-negative and distinct; 
(b) d,(L,M) = d,(M,L); 
(c) O~dr(L,L); 
(d) rain d~(L, N) < max d,(L, M) + max d,(M, N); 
(e) d,(L,M)= U U d,(l,m) (2.1) 

I~L m~M 

These properties are chosen so that they tie up with the metric properties 
of continuous space when the limit is taken. For suppose that we refine our 
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apparatus so that we get a finer cellular structure which is obtained by a 
subdivision of our original structure. Let n ,  and n2i be cells obtained by i 
subdivisions of cells n~ and n 2 respectively. The transition to the continuous 
limit is accomplished by letting the number of cells in a given section of the 
measuring rod become infinite and by letting i tend to infinity. We should 
then expect that all the elements of dr(nl~, n2~) converge to one value which 
will be the usual distance between the two points to which nl~ and nEt 
converge. 

In the special case in which the rod has a uniform cubic structure specified 
by the parameter ~ the distance set dr(n1, n2) could be taken to have the form 

dr(n1, n2) = {K~:Kinteger, Kl(nl, n2) < K <  K2(ni, n2)} 

In particular suppose that the cellular space has a cubic structure also 
specified by the parameter ~. Then if we specify each cell by three coordinate 
numbers with n - (nl,n2,n3) and m - (ml,mE,m3) we can take 

dr(n,m)= {K~:Kinteger = J [ l=~ ([ni- roll-]-ei)2- ~22- ~32] - ~ 1 '  

--1 < ~i< 1,--1 < ~ <  1} 

For example, i fm  = (0,0,0) and n = (10,0,0) then dr(m,n) = {8~,9~, 10~, 
11 ~:, 12~}, and for all l, dr(l,l) = {0, ~:, 2~}. 

3. The Interpretation of  Eigenvalues 

A broadly held tacit assumption made in physics is that there are many 
equivalent ways of measuring a given observable, and this assumption is 
very useful because it greatly simplifies the theories we use to describe 
physical processes. For example, in quantum mechanics we postulate an 
operator corresponding to an observable such that its eigenvalues cor- 
respond to the quantities which are observed, with no mention of the actual 
measuring process involved. In this viewpoint we regard the observable as 
a thing in itself with the measuring process added as an afterthought. 
However, if we agree with Bohm et al. (1970) that, in rough terms, we should 
define the observable by the way in which it is measured, then we should 
drop the above assumption. In particular this would mean that the eigen- 
values predicted by quantum mechanics are no longer the exact quantities 
that are actually measured, so that we must either give a new interpretation 
of the eigenvalues, or reject them altogether as a means of predicting 
measurements. 

It may be possible to use these sets of eigenvalues by making the following 
interpretation: each operator in quantum mechanies corresponds to a class 
of measuring processes, each process defining its own observable. Whereas 
using the assumption all processes in a class define the 'same' observable, 
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without the assumption we now have a splitting of this definition. The 
possible set of values which is measured in each process is then predicted by 
constructing it from the set of common eigenvalues, and this construction 
process will depend on the individual observing process. 

To illustrate how this construction process might work we will consider 
the case in which the result of a measurement is recorded as a line on a 
sheet of paper which forms part of the measuring apparatus. The paper will 
have some cellular structure so that from the distance sets corresponding to 
this line and to previously known values of the observable, the observed 
quantity can be calculated. The calculating will be done both for a linear 
and a quadratic scale. We will assume that both processes correspond to the 
same class of measuring processes characterised by the operator A with 
cigenvalues av The operator A itself may depend on the cellular structure 
imposed by the apparatus and in that case so will the az (for example, see the 
momentum eigenvalues (1.3)). In the continuous limit these eigenvalues will 
tend to the usual eigenvalues denoted by al'. 

Linear scale. The measuring instrument records the observation as a 
straight line on a sheet of paper which has some cellular structure, and there 
will be a distance set associated with the cells in which the end points of the 
line lie. Previously a 'known' value a of the observable was recorded as 
corresponding to the distance set s. If a further measurement is now made, 
and it is found that a distance set d corresponds to the line obtained, then 
assuming a linear scale we may associate a set of observed values 

{dia/sj:d~ ~ d, sj e s} (3.1) 

with the distance set d. In the continuous limit all the elements of d and all 
the elements ofs  will converge to their respective limits, so that the elements 
of  (3.1) will all converge to one value. 

The set (3.1) is obtained by measurement and we must now try to predict 
those values from the eigenvalues a, of the quantum mechanical operator. 
Now if we use a measuring rod with a cubic structure specified by the 
parameter ~:, then the elements of s will have the form 

(m + ~1) E (~, = 0 ,1 ,2  . . . .  m)  

for some integer m, and the elements of d will have the form 

(n + E2) ~: (Ez = 0, 1, 2 . . . .  ht2) 

Here a further complication has been added because the values of/z1 and/z2 
will depend on the cellular structure of the paper. Now consider the set 

I[a, m/a] + e2 } 
5:(a,) = ( ~ - ~ - ~  a: E, = 0, 1, . . . ,  ~, ; Ez = 0, 1,...,/~z (3.2) 

where [x] denotes the integer part of x: this set and the set (3.1) contains the 
same number of elements, and the elements of both sets have the same 
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forms, that is, integer xa/interger. Also, by letting rn~: tend to some finite 
quantity as ~: -~ 0 it is easy to show that ~(a t )  -+ {a/} in the continuous 
limit. We then interpret the 5P(at) by saying that any element of U S'~(at) 

1 

is a possible outcome of a measurement of the observable using this linear 
scale. 

There will certainly be other constructions for Se(at) which fit the above 
requirements, but the form (3.2) illustrates the type of construction that 
will be needed. Note that there is a splitting of the levels a~, but some of 
these may be the same as some split levels corresponding to different at. 
We may also find the state &the  system from a measurement &the distance 
set d: if the elements of d are measured to be n~, n~ + ~,. ;., n~: +/~2 ~ then 
[a~ m/a] ~ = n~ so that 

na/m < az < (n + 1)a/m (3.3) 

Then the system is in any one of the states I such that (3.3) holds. 
Quadratic scale. Now the scale is assumed to be quadratic so that it first 

has to be calibrated by supposing that 'known' values a' and a" of the 
observable correspond to the distance sets s' and s" respectively. I f  a further 
observation is made resulting in a distance set dthen any one of the elements 
of the set 

{ d~ - s x" , d~ -- sk' ,, . . . . . .  } 
~ a  + ~ a  : a ~ a ,  sk ~ s , s j  ~s" (3.4) 
Slc - -  S j  S j  - -  S[~ 

can be taken to be the value of the observable. Again in the continuous 
limit all the elements of (3.4) converge to one value. 

We must now try to predict the elements of (3.4) using the eigenvalue a t. 
If  again the measuring rod has a cubic structure specified by the parameter 
~: then the elements of d, s' and s" will have the forms 

(n + ~) t (e = 0, 1,2 . . . .  ,/~) 

(m '+  d)~ ( e ' = 0 , 1 , 2  . . . . .  /~') 

(rn"+E")~ (~" = 0, 1,2,...,/~") 

respectively, where/~, ~' and/~" are integers which depend on the cellular 
structure of the paper. Now consider the set 

([at(m' - m") - a" m' + a' m"] 
= - - -  J - m "  + - 

t 72- -7 a ' +  

[az(m' - m") - a" m' + a' m"] 
~ - - ~ ,  - m '  + r  

a":~ =0,  1,...,/~; 
m" -- m' + E" - ~' 

% 

= 0 ,  1 . . . . .  ~'; e" = 0 ,  1 . . . .  , y ' . [  (3.5) E" 

J 
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this set has the same number of elements as the set (3.4), the elements have 
the same form and it can be easily shown that ~gV'(a~) -+ {a{) in the con- 
tinuous limit. We then interpret 6e'(a~) by saying that any element of 
U 6a'(a~) is a possible outcome of a measurement of the observable using 
z 

this quadratic scale. Again there could be many other constructions with 
these required properties which make it suitable for this interpretation, but 
(3.5) illustrates the type of construction that will be needed. 

The set (3.5) also gives a splitting of the eigenvalues, but this splitting will 
be different from the splitting given by (3.2). This distinction does not arise 
in continuous theory. Thus, the set of predicted quantities which relate to 
observations on the differing measuring scales will be different, and no 
meaning can be given to the statement that the observables measured on 
both instruments are the 'same', although they are equivalent in the sense 
that both sets of values are constructed from the same set of eigenvalues. 
Further investigation is needed into the problem of what makes two different 
observing processes equivalent in this weaker sense. 

4. Transformations Between Observers 

In continuous theory the transformation between the coordinate systems 
x~(i = 1,...,4) and x / ( j  = 1 . . . . .  4) of two observers is given by specifying the 
function 

x / = f j ( x l  . . . .  ,x4) ( j =  1, . . . ,4)  (4.1) 

in some region of space-time. If  the observers have had no previous contact, 
the specification can be brought about by an exchange of information about 
their respective coordinates for each event in the region, and on the basis of 
this information they then formulate the transformation (4.1). But such a 
formulation would require an exchange of an infinite amount of infor- 
m a t i o n - f o r  example, an infinite amount of information is contained in the 
statement that the origins are moving with constant relative velocity. Such 
an exchange would require the expenditure of an infinite amount of energy. 
Thus the transformation (4.1) represents an ideal situation existing between 
the observers, one which can never arise using any realistic observation and 
exchange processes. 

In practice, therefore, the observers must be content with a transformation 
law which is not as detailed as that given in (4.1), with the amount of detail 
depending on how much information they have exchanged. Furthermore, 
in a cellular framework the observers must compare coordinates by exchang- 
ing information about in which of their cells the common events lie, and 
will not specify individual points within the cells. This is therefore another 
cause of lack of detail in the transformation. 

Having exchanged some information of this type the next step is to ask 
which cell, or set of cells R, of an observer's cellular space-time corresponds 
to the cell n of the other observer's cellular structure. That is, what is the 
construction of Rn such that it is possible, consistent with the information 
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exchanged, for both cell n and any cell of R, to contain a common event. It 
is to be expected that as more information is exchanged the sets R, will 
contain fewer elements, so that in this sense the transformation becomes 
more 'exact'. These and other properties will be investigated in the rest of 
this section. The notation is such that n and n' (with or without suffices) 
denote individual cells in the cellular spaces S and S '  respectively of the two 
observers, while N, M and N' ,  M', etc., denote sets of  cells in these two 
spaces. 

The observers exchange information by specifying to each other the sets 
of  cells in S and S'  in which an event occurs, for example the impact of two 
particles or the explosion of a star. Of course they will have to know that 
they are both looking at the same event without being able to make reference 
to their coordinate systems because they are using the event to set up the 
transformation, but this could always be done with the application of 
ingenuity. 

Suppose the observers look at the events E~ (~ = I . . . .  , i), and they each 
locate the events in their own coordinate systems so that observers with 
spaces S and S '  see E~ located in the sets N~ and No,' respectively. This 
information is exchanged between the observers and will be denoted by 
I(N~, +-+ N~'). After exchanging i such pieces of information, the total 
information exchanged will be denoted by 

I, = I(N~ +-+ N~',Nz +-~ N2 ' , . . . ,N ,  +-+ N,') 

or more shortly by I (N ~ N'). We will assume that none of  the pieces of  
information contradict any other, and in that case Ij -+ I~ i f j  ~> i. (In the 
context of  this section the symbol -+ will mean 'implies'.) 

We now introduce the proposition F~(N,N'), defined for all sets N in S 
and N '  in S' ,  which states that consistent with the information 1exchanged 
between the observers it is possible for sets N and N '  to contain a common 
event. Then the following properties are assumed to hold: for each N in S 
and N '  in S' ,  

O) F~(N, N')  ---> Fa(N, N')  if  I --> J; 
(ii) for a l l /consis tent  with I(N,,--, N'), F,(N,N')  is true; 

(iii) F,(N, N')  --+ FI(M, M' )  for all M = N, M '  = N' ;  
(iv) there exist n ~ N and n' e N '  such that FI(N, N')  -+ F,(n, n'). 

Now define 
R~; - {n' :FI(N, n') is true} 

R;N, ~ = -- {n : Fl(n, N')  is true} (4.2) 

that is, R~; is the set of cells in S '  such that, consistent with the information 
/, it is possible for any one of these cells to contain an event in common with 
the region N in S, and R;~, is the set of cells in S such that, consistent with 
the information/,  it is possible for any one &these cells to contain an event 
in common with the region N '  in S'.  In the continuous theory the trans- 
formation (4.1) links a single point in S '  with a single point in S, but now in 
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the cellular theory the best we can do is to link a set of cells R,X; in S'  with the 
single cell n in S (and R;~,, gives the reverse transformation from a cell n' in 
S'  to a set of cells R x �9 in S). ;n 

Using the definition (4.2) and the properties (i) to (iv) above, the following 
results can be found: 

(a) For all N and N',  J and I -+ J, 

Rim ~ RJ; (4.3) 

R;% c R;J~, 

that is, the greater the amount of information passed between the observers 
then the smaller the R-sets become. The transmission of further information 
eliminates some of the possibilities that existed in linking cells in S and S', 
and the formal transformations 

n ~-+ R~;, n' ~ R;r,, 

become more exact. No useful purpose would be served in investigating the 
quantities limR,~; and limR[., as the amount of information I becomes 
infinite, because the limiting process represents an ideal state which is not 
allowed to any observer. 

(b) For all I and sets N and N',  
I __ I U R.; - Ru; 

,~N (4.4) 
U R r = R t ;n' ;N" 

n'~N" 

(c) For all I and sets N and N'  

N =  M - +  R~; = RIM; 
(4.5) 

N ' c M ' - + R  1 = i ;lv" R;M" 

that is, the smaller the set in S then the smaller is the transform of that set 
in S', and vice versa. 

(d) For al l / ,  n' �9 R.I; if and only if n �9 R;X,, (4.6) 

That is, given the transformation from one space to another, result (4.6) is 
necessary for the consistency of the reverse transformation. 

(e) For all I and sets N and N', 

N ~ R;IRN;~ 
(4.7) 

N'  = R~,;u,, 

Thus starting with set Nin  S and forming the transformed set R~; in S'  the 
set in S corresponding to the reverse transformation of region R~; should 
contain N. This, with the similar result starting with N'  in S ' ,  further 
guarantees the consistency of the transformation. 
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All the above results apply when the cells are either four-dimensional 
space-time cells or three-dimensional space cells. For the case in which the 
transformation is between two three-dimensional cellular spaces we will 
need to include the cellular result equivalent to the preservation of distance 
by the transformation. This will take the form of a relation between the 
distance set associated with two cells in one space, and the distance set 
associated with the corresponding R-sets in the other space. 

Let d,(m,n) denote the distance set obtained with a measuring rod r 
corresponding to cells m and n in S, and let d/(m', n') denote the distance set 
corresponding to cells m' and n' in S '  obtained using the same rod r. Then 
for a transformation between the two three-dimensional spaces we impose 
the following limitations on the R-sets, Z denoting the empty set: 

R I(NoN') and all (i) given any m and n in S, then for each m ' z  m; 
n' @ Rln~ Ne-*N''m~-+m'), 

d~(m, n) n 4'(m', n') # z 
(ii) given any rn' and n' in S' ,  then for each m z R;~ N~N') and all 

n z R.',(; ~N',m~m'), 

4(m, n) N 4'(m', n') # z 

(iii) given any m in S and any n' in S' ,  then for each m' z R~ N~N') and 
RI(N~-~N" m~--~m') all n ~ --;n' 

4(m, n) f'l d/(m', n') # 

Using these conditions together with conditions (2.1) and the results (4.3) 
one can show that for all non-contradictory I and J, 

(iv) for each m and n in S, dr(m, n) f-I dr'(Rm; , I  Rn;)d =i & (25," 
(V) for each m' and n' in S', dr(R(.~,,R.S,,) N d/(m',n') # :z ; 

(vi) for each n in S and m' in S', dr(R(,,,,n) f) d/(m',RS;) # ;~. 

Result (iv) shows that the distance set corresponding to m and n in S has at 
least one element in common with the distance set associated with the 
corresponding R-sets in S '  when the same measuring rod is used. The 
remaining results are variants of this result. These relations would be much 
involved if the observers were allowed to use different measuring rods. 

To give a simple illustration of the use of these R-sets, suppose that we 
wish to describe the motion of a particle P in a cellular space. Then the 
most complete description of the motion is given by specifying the four- 
dimensional cells through which the particle passes. The path of the particle 
in the space can then be specified by the set Np of these cells. If  Np and ATe' 
are the paths of P in the spaces S and S '  respectively then these paths must 
be such that for al l / ,  

Are' = R~p; and Are ~ R I ;Np" 

More likely the particle will have extension so that its motion is given by 
specifying not single cells, but regions Np(i) and Ne'(i) (i = 1,2 . . . .  ) through 
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which the particle passes. The/-dependence of these regions can be taken 
such that 

Ne(i) f'l Rr..Np.,) r ;~ 

The paths are then given in the spaces by the sets Ne = U Nr(i)  and 
t 

N p ' =  U Ne'(i). 
i 

Finally, if we are considering the motion of a rigid body and wish to specify 
as far as possible its linear and rotational motion then we must pick points 
P~(i = 1 . . . .  ,p) of  the body and specify the paths of these individual points. 
IfNe, and N~ are these paths in S and S '  respectively then the motion in each 
space is given by specifying the quantities Np~, Np~ . . . .  , Nep and N~,, 
N v  . . "~  t e2, N;,.  As above, we have for all L 

' ~ ( i  = 1 , . . . , p ) .  N;,, c R~p~; and Ne~ c R;Np, 

The larger the value o fp  then the better is the description of the motion in 
each space. 

Conclusions 

The main points which have been made are: 
1. The cellular structure of space-time is observer-dependent. The 

observer is able to set up any structure consistent with the amount of energy 
he has available for refining his apparatus. Infinite energy is needed to refine 
the structure to a continuum. 

2. The concept of a single distance must be replaced by the concept of  a 
distance set, the elements of which depend on the cellular structures of both 
the space and the measuring rod used in the measurement. 

3. There is a splitting in the usual definition of an observable, and the 
results of a measurement of each new observable defined by this splitting 
are predicted from the eigenvalues of a common operator by an observer- 
dependent construction. 

4. The transformation between two cellular structures is not as well 
defined as in the continuous case, with at best a cell in one space being 
associated with a set of cells in the other. These sets depend on the in for -  
mation passed between the observers, and the transformation will become 
more exact, in the sense that these sets will contain fewer elements, as more 
information is exchanged. 
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